TAIDOB COLLEGE

PRE-UTME PREPARATORY ASSESSMENT

Physics

1. length in closed at one end and several turning forks of increasing frequency used to obtain resonance at the open end. If the turning fork with the lowest frequency which gave resonance had a frequency f_{1} and the next turning fork to give resonance had a frequency f_{2}, find the ratio f_{2} / f_{1}.
A. 8
B. $\quad 3$
C. 2
D. $1 / 2$
E. $\quad 1 / 3$
2. Which of the following is NOT a vector quantity?
A. Force
B. Altitude
C. Weight
D. Displacement
E. Acceleration.

A brick at rest on a horizontal table is pulled by a horizontal cord, as shown in Fig. 2. The force of friction on the brick
A. Increase if the pull increases but the brick does not move.
B. Is directly horizontal to the right
C. Decreases if an identical brick is placed on the first.
D. Is zero if the brick is pulled hard enough to make it slide.
E. Change if the brick is turned on its side.
6. The force with which an object is attracted to the earth is called its
$\begin{array}{ll}\text { A. Acceleration B. Mass } & \\ \begin{array}{ll}\text { C. Gravity } & \text { D. Impulse } \\ \text { E. Weight. } & \end{array}\end{array}$
Fig. 1
Consider the three forces acting at O and in equilibrium as shown in Fig. 1. Which of the following equation is/are CORRECT?
I. $\quad P_{1} \cos \theta_{1}=P_{1} \cos \theta_{2}$
II. $\quad P_{3}=P_{1} \cos \Theta_{1}+P_{2} \cos \Theta_{2}$
III. $\quad P_{1} \sin \theta_{1}=P_{2} \sin \theta_{2}$
A. I only
B. II only
C. III only
D. II and III only E. I and III only

Which of the following statements about friction it NOT correct?
A. The force of kinetic friction is less than the force of static friction.
B. The force of kinetic friction between two surfaces is independent of the areas in contact provided the normal reaction is unchanged.
C. The force of rolling friction between two surfaces is less than the force of sliding friction.
9. Which of the following statements about liquid pressure is NOT correct? The pressure
A. At a point in a liquid is proportional to the depth.
D. The angle of friction is the angle between the normal reaction and the force friction.
E. Friction may be reduced by lubrication.
8. If the relative density of a metal is 19 , what will be the mass of $20 \mathrm{~cm}^{3}$ of the metal when immersed in water?
A. $\quad 380 \mathrm{~g}$
B. $\quad 400 \mathrm{~g}$
C. $\quad 360 \mathrm{~g}$
D. $\quad 39 \mathrm{~g}$
E. $\quad 180 \mathrm{~g}$

The refractive index of a liquid is 1.5 . If the velocity of light in vacuum is $3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$, the velocity of light in the liquid is
A. $\quad 1.5 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
B. $\quad 2.0 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
C. $\quad 3.0 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
D. $\quad 4.5 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
E. $\quad 9.0 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
B. At any point in a liquid is the same at the same level.
C. Is exerted equally in all directions at anypoint.
D.

Of a liquid at any point on the wall of its
container acts in a direction perpendicular to the wall.
E. At a particular depth depends on the shape of the vessel.
14. If the pressure on $1000 \mathrm{~cm}^{3}$ of an ideal gas is doubled while its Kelvin temperature is halved, then the new volume of the gas will become
A. $\quad 25 \mathrm{~cm}^{3}$ B. $\quad 50 \mathrm{~cm}^{3}$
C. $\quad 100 \mathrm{~cm}^{3}$ D. $\quad 200 \mathrm{~cm}^{3}$
E. $\quad 400 \mathrm{~cm}^{3}$
15. A train has an initial velocity of $44 \mathrm{~m} / \mathrm{s}$ and an acceleration of $-4 \mathrm{~m} / \mathrm{s}^{2}$. Its velocity after 10 seconds is $250 \mathrm{~m} \mathrm{~s}^{-1}$, how much closer is the ship to the cliff?

A.	$10 \mathrm{~m} \mathrm{B}$.	125 m				
C.	175 m D.	350 m	A.	$2 \mathrm{~m} / \mathrm{s}$	B.	$4 \mathrm{~m} / \mathrm{s}$
E.	$1,000 \mathrm{~m}$		C.	$8 \mathrm{~m} / \mathrm{s}$	D.	$12 \mathrm{~m} / \mathrm{s}$

1. Which of the following is NOT correct?
I. The pitch of a sound note depends on the frequency of vibrations.
II. The intensity of a sound note is proportional to the amplitude of vibrations.
III. Beats are produces by two sources of sound because one wave is travelling faster than the other.
IV. When two sources of sound of frequencies 500 Hz and 502 Hz are sounded together, a neat frequency of 2 Hz is observed.
V. The first harmonic of a note has double the frequency of the fundamental note.

A.	I and II	B.	II and III
C.	I and II	D.	III and IV
E.	IV and V.		

16.

\square
$\square=$

Which of the following conditions are necessary and sufficient for total internal reflection to take place at the boundary between two optical media?
I Light is passing from optically denser medium to optically less dense medium.
II Light is passing from optically less dense medium to optically denser medium.
III Angle of incidence is greater.
IV Angle of incidence if lesser.
A. I and II only
B. II and II only
C. III and IV only
D. I and III only
E. II and Iv only
17. A man of mass 50 kg ascends a flight of stairs 5 m high in 5 seconds. If acceleration due to gravity is $10 \mathrm{~m} \mathrm{~s}^{-2}$, the power expended is
Which of the following statements about defects of vision is/ are CORRECT
I. For a long sighted person, close objects appear blurred.
II. For a sort sighted person, distant objects appear blurred.
III. Short sight is corrected by using a pair of converging lenses.

A.	I only
C.	I and II only
D.	II and III only
E.	I, II and III.

13. The range of wavelengths of the visible spectrum is $400 \mathrm{~nm}-700 \mathrm{~nm}$. The wavelength of gamma rays is
A. Longer than 700 nm
B. Shorter than 700 nm but longer than 400 nm
C. $\quad 550 \mathrm{~nm}$
D. Shorter than 400 nm
E. Infinite
A. 100 W B. 300 W
C. 250 W
D. 400 W
E. 500 W
14. Which of the following arrangements in the sequence shown can be used to obtain a pure spectrum of white light?
A. Source, slit, converging lens, prism, converging lens, screen.
B. Source, slit, diverging lens, screen.
C. Source, converging lens, prism, diverging lens, screen.
D. Source, slit, prism, diverging lens, screen

Fig. 3.

The diagrams in Fig. 3 show three circuits. The internal resistances of the batteries are negligible. Which of the currents is the largest?
A. $\quad I_{1}$
B.
D. I_{4}
E. $\quad I_{5}^{3}$
I_{5}
20. A milliameter with full scale deflection of 100 mA has an internal resistance of 5 ohms. It would be converted to an ammeter with a full scale deflection of 1 A by connecting a resistance of

A. 5	l_{99} ohm in series with it
B. 5	l_{99} ohm in parallel with it
C.	$99 I_{5}$ ohm in parallel with it
D.	$99 /_{5}$ ohm in series with it
E.	2 ohms in series with it

21. It is usual to transmit electric power at high voltage and low current. Which of the following are possible advantages of the method.
I Heat losses are reduced because the currents are small.
II Thin wires can be used because small currents are flowing.
III The power can flow faster because the voltage is high.
A. I only

currents in each resistor is
A. $\quad 1 \mathrm{~A}$
B. $\quad 4 \mathrm{~A}$
C. $\quad 16 \mathrm{~A}$
D. 18 A
E. $\quad 36 \mathrm{~A}$
22. In the circuit shown in Fig. 4, T is a resistor whose resistance falls as temperature increases. L_{1} and L_{2} are lamps. Assuming the cell has negligible internal resistance, as the temperature of T increases
A. $\quad \mathrm{L}_{1}$ becomes brighter, L_{2} becomes dimmer.
B. $\quad L_{1}$ and L_{2} becomes brighter.
C. $\quad \mathrm{L}_{1}$ becomes dimmer, L_{2} becomes brighter.
D. $\quad L_{1}$ becomes brighter, L_{2} does not change.
E. $\quad L$ becomes dimmer, L does not change.
23. Which of the diagrams in Fig. 5 gives the correct resultant R of two vectors P and

\square
P

Q?

P
B. I and II only
C. II and III only
D. I and III only
E. I, II and III.
22. The linear expansivity if brass is $2 \times 10^{-10} \mathrm{C}^{-1}$. If the volume of a piece of brass is $100 \mathrm{~cm}^{3}$ at $0^{0} \mathrm{C}$, what will be its volume at $100^{\circ} \mathrm{C}$?
A. $\quad 10.02 \mathrm{~cm}^{3}$
B. $\quad 10.04 \mathrm{~cm}^{3}$
C. $\quad 10.06 \mathrm{~cm}^{3}$
D. $\quad 10.20 \mathrm{~cm}^{3}$
E. $\quad 102.00 \mathrm{~cm}^{3}$
23. A 24 V potential difference is applied across a parallel combination of four 6 -ohm resistors. The

fig 5.

R

R
I
II

$P \quad P$
A. I
B. II
C. III
D. IV
E. V
26. The electrochemical equivalent of a metal is 0.126 $\times 10^{-6} \mathrm{~kg} / \mathrm{C}$. The mass of the metal that a current of 5 A deposit from a suitable bath in 1 hour is
A. $\quad 0.0378 \times 10^{-3} \mathrm{~kg}$
B. $\quad 0.227 \times 10^{-3} \mathrm{~kg}$
C. $\quad 0.378 \times 10^{-3} \mathrm{~kg}$
end. Calculate the unstretched length of the spring assuming Hooke's law is obeyed.
$\begin{array}{lrr}\text { A. } & 9.33 \mathrm{cmB} . & 10.00 \mathrm{~cm} \\ \text { C. } & 10.66 \mathrm{~cm} \mathrm{D.} & 12.00 \mathrm{~cm} \\ \text { E. } & 15.00 \mathrm{~cm} & \end{array}$
33. Each of the diagrams in Fig. 6 represents two current carrying conductors situated close to each other. In which two diagrams are the forces between the two wires attractive?
D. $\quad 0.595 \times 10^{-3} \mathrm{~kg}$
E. $\quad 2.268 \times 10^{-3} \mathrm{~kg}$
27. Ripples on water are similar to light waves in thatthey both
A. Have the same wavelength
B. Are longitudinal

II
C. Cannot be reflected
D. Travel at the same speed
E. Can be refracted and diffracted.
28. A piece of wood is floating on water. The forces acting on the wood are
A. Upthrust and reaction.
B. Weight and reaction
C. Weight and upthrust
D. Upthrsut and viscosity
E. Weight and viscosity.
29. Of the following derived units, the one that is not a unit of power is
A. Joule/second
B. Ampere/volt
C. Amphere ${ }^{2}$ volt
D. $\quad \mathrm{Ohm}^{2} /$ volt
E. Volts ${ }^{2} / \mathrm{ohm}$.

I

30. A force of 16 N applied to a 4.0 kg block that is at rest on a smooth horizontal surface. What is the velocity of the block at $t=5$ seconds?
A. $\quad 4 \mathrm{~m} / \mathrm{s}$
B. $\quad 10 \mathrm{~m} / \mathrm{s}$
C. $\quad 20 \mathrm{~m} / \mathrm{s}$
E. $\quad 80 \mathrm{~m} / \mathrm{s}$
31. 1,000 identical drops of oil of density $5000 \mathrm{~kg} / \mathrm{m}^{3}$
have a total mass of $5 \times 10^{-4} \mathrm{~kg}$. One of the drops have a total mass of $5 \times 10^{-4} \mathrm{~kg}$. One of the drops forms a thin film of area $0.5 \mathrm{~m}^{2}$ on water. The thickness of the film is
A. $\quad 2 \times 10^{-8} \mathrm{~m} \mathrm{~B}$. $\quad 2 \times 10^{-9} \mathrm{~m}$
C. $\quad 2 \times 10^{-7} \mathrm{mD} .3 \times 10^{-9} \mathrm{~m}$
E. $2.8 \times 10^{-8} \mathrm{~m}$. 34

A. I and V

B. I and III
C. II and IV
D. II and V
E. III andIV
4. Which of the following statements is CORRECT?

I The mass number is equal to the total
32. The total length of a spring when a mass of 200 g is hung from its end is 14 cm , while its total length is 16 cm when a mass of 30 kg is hung from the same number of protrons and electrons in an atom.
II The atomic number is equal to the number of protrons in an atom

III The number of electrons in an atom is equal to the total number of protons and neutrons in the nucleus.
35. A short response time is obtained in a liquid-inglass thermometer when the
A. Bulb is large and thick-walled.
B. Stem is long and thin.
C. Bulb is small and thick-walled.
D. Bulb is high density and the bore is large.
E. Bulb is thin-walled and the liquid is a good conductor of heat.
36. A machine has a velocity ratio of 5. It requires a 50 kg weight to overcome a 200 kg weight. The efficiency is
A. $\quad 4 \%$
B.
5\%
C. $\quad 40 \%$
E.
D. 50%
\longrightarrow current is
A. Upward B.
North
C. South
D. West
\qquad
A. I only
B. II only
C. III only
D. I and II only
E. II and III only.
E. Bubisthin-walledand the is agood

Fig. 7
In Fig. 7 above, QR is a vertical conductor and the current I flows from R to Q . P is a point on the horizontal plane and it to the South of the wire. The direction of the magnetic filed at P due to the
37. If the normal atmospheric pressure in a laboratory supports a column of mercury 0.76 m high and the relative density of mercury is 13.8 , then the height of water column which atmospheric pressure will support in the same laboratory at the same time is

A.	0 m	B.	10 m
C.	13 m		
D.	14 m		
E	18 m		

41. Which of the following best describes the energy changes which take place when a steam engine
A.

B.
C.
B.

42. An electric current of 3 A flowing through an electric heating element of resistance 20 embedded in $1,000 \mathrm{~g}$ of an oil raises the temperature of the oil by $10^{\circ} \mathrm{C}$ in 10 seconds, then the specific heat capacityof the oil is
A. $\quad 1.8 \mathrm{~J} / \mathrm{g} \mathrm{B}$.
$0.6 \mathrm{~J} / \mathrm{g}$
C. $\quad 0.18 \mathrm{~J} / \mathrm{g}{ }^{0} \mathrm{C}$
D. $\quad 1.8 \mathrm{~J} / \mathrm{g}{ }^{0} \mathrm{C}$
E. $\quad 0.06 \mathrm{~J} / \mathrm{g}^{0} \mathrm{C}$
43. The difference of potential between the terminals of a cell is 2.2 volts. When a 4 ohm resistor is connected across the terminals of this cell, the potential difference is 2 volts. What is the internal resistance of the cell?

A.	0.10 ohms	B.	0.25 ohms
C.	0.40 ohms	D.	2.50 ohms
E.	4.00 ohms.		

40.

Q
I

Which of the following statements clearly describe the behaviour of the fire alarm shown in Fig. 8 below given that the linear expansivities of copper and steel are $2.0 \times 10^{-5} /{ }^{\circ} \mathrm{C}$ and $1.2 \times 10^{-5} /^{\circ} \mathrm{C}$ respectively?

Fig. 8.

I The bimetallic strip will not be able to close the circuit when there is fire
II The bimetallic strip will close thecircuit when there is fire
III If the copper and steel are interchanged, the circuit will close when there is fire.
A. I only
B. II only
C. III only
D. I and III
E. II and III
47. PQ is a thin rod on a horizontal table, RS is a plane mirror inclined at $45^{\circ} \mathrm{C}$ to the horizontal as shownin Fig. 10 above. The image of PQ as seen in the mirror by the eye, Tis
43. Four equal resistors R_{1}, R_{2}, R_{3} and R_{4} are connected in series as shown in Fig 9 below. $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} are voltmeters connected as indicated. Which of the following relations is CORRECT?
A. $\quad \mathrm{V}_{1}=\mathrm{V}_{3}=\underline{\mathrm{V}}_{2}$.
B. $\quad \mathrm{V}_{1}=2 \mathrm{~V}_{2}=\mathrm{V}_{3}{ }_{2}$
C. Highly magnified.
D. $\mathrm{V}_{1}=2 \mathrm{~V}$

44 The speed of light in vacuum is $3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$. If the refractive index of a transparent liquid is $4 / 3$ thenthe speed of light in the liquid is
A. $\quad 0.44 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
B. $\quad 2.25 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
C. $\quad 3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
D. $\quad 4.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
E. $\quad 4.33 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\begin{array}{ll}\text { A. } & \text { Horizontal } \\ \text { B. } & \text { Parallel to the mirror }\end{array}$
C. At infinity
D. Vertical
48. The specific latent heat of vapourization of a substance is always
A. Less than its specific latent heat of fusion.
B. Greater than its specific heat of fusion.
C. Equal to its specific latent heat of fusion
D. All of the above depending on the natureof the substance
E. None of the above
49. Longitudinal waves do not exhibit

A.	Refraction	B.	Reflection
C.	Diffraction	D.	Polarization

A.
0.8
$\begin{array}{ll}\text { C. } & 20.0 \mathrm{~N} / \mathrm{C} \mathrm{D} . \\ \text { E. } & 20.0 \mathrm{C} / \mathrm{N}\end{array}$
B.
0.8 N/C
E. Rarefaction
C. $\quad \mathrm{V}=1 / 2 \mathrm{~V}=\mathrm{V}$
D. $\quad V_{1}-V_{3}=V_{2}$
E. $\quad V_{2}-{ }_{v} 1=\underline{V}_{\underline{3}}$.
4.2 N/C
50.

46. Which of the following may be used to determinerelative humidity in a physics laboratory?

i. Manometer

ii. Wet-and-dry bulb hygrometer

III Hair hygrometer
IV A hydrometer
A. I only
B. II and III only
C. II only
D. III only
E. II, III and IV only

Fig. 11 above shows an inverted U-tube with the open end, O of one limb below the level, W , of thewater in a tank. In order that water should begin toflow from the tank it is necessary that
A. The U-tube is completely filled with waterand P should be higher than W .
B. $\quad \mathrm{P}$ should be lower than O and W
C. $\quad \mathrm{P}$ should be lower than W and O should reach to the bottom of the vessel.
The U-tube is completely filled with waterand P should be lower than W.
E. The U-tube is completely filled with waterand O should reach the bottom of the vessel.

